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The scattering of a scalar plane wave (neutrons) from a single atomic plane

consisting of any two-dimensional lattice with a basis is studied using the Ewald

dynamical theory of diffraction. Formulae for the re¯ection and transmission

coef®cients obtained by evaluating the optical plane lattice sums are valid for

general geometries, including nonsymmetrical and noncoplanar diffractions. The

approach adopted is different from and more general than that by Yashiro &

Takahashi [Acta Cryst. (2000), A56, 1663±167]. The structure factor yielded by

this procedure differs from that used in the kinematical or Laue dynamical

diffraction theories.

1. Introduction

Today's sophisticated experimental equipment enables the

study of the atomic structures of crystal surfaces. Thus, the

problem of radiation scattering on a single atomic plane has

become important. In particular, the study of the intensity of

scattered radiation far from Bragg peaks (crystal truncation

rod scattering) (Robinson, 1986) has awoken the interest of

some authors (Caticha, 1994; Nakatani & Takahashi, 1994;

Takahashi & Nakatani, 1995; Yashiro & Takahashi, 2000) in

Darwin's papers (Darwin, 1914), which were the ®rst work in

the ®eld of the dynamical diffraction theory.

The crucial point of the Darwin theory is to ®nd the

re¯ection and transmission coef®cients of a single atomic

plane. To evaluate them, it is necessary to sum the waves

emitted by the atomic oscillators forced by the incoming

external wave, the interactions among the oscillators not being

considered. In the Darwin theory, the sum at a distant point is

calculated by using the phase differences of the waves emitted

by different scatterers in the atomic plane.

The original Darwin theory concerned symmetrical Bragg

re¯ection. Later, his method was generalized to nonsymme-

trical re¯ection (Warren, 1990) and, in the recent paper by

Yashiro & Takahashi (2000), nearly 90 years after Darwin, to

noncoplanar re¯ection or transmission. Another procedure,

used for the coplanar case, in which the plane is divided into

Fresnel zones can be found in James (1950) and Borie (1967).

In the present paper, we study the interaction of the

radiation with a single atomic plane in the framework of the

exact dynamical diffraction theory based on the discrete

model of the crystal developed in our former papers (Litzman,

1980, 1986). This approach leads to the evaluation of the

optical plane lattice sums de®ned in Appendix A.

The paper is structured as follows. In x2, we apply this

method to the re¯ection and transmission of neutrons by a

single plane, Ewald's dipole model being addressed brie¯y.

Results obtained are valid for general scattering geometry. x3
is devoted to comparison of our results with those of the

kinematical theory by Yashiro & Takahashi (2000) and of the

dynamical theory by Laue (see e.g. Rauch & Petraschek,

1978). In particular, the new form of the structure factor

yielded by our theory is analyzed. In x4, the basic ideas of how

to handle the problem of scattering by a stack of planes are

outlined.

2. Reflection and transmission by a plane lattice

We shall study the re¯ection and transmission of a plane wave

f �r� � A exp�ikr�; k � kk � e3kz; kz > 0; �1�

by a system of scatterers forming an ideal plane crystal lattice

with a basis formed by s atoms, ®xed at points

R�
m � m1a1 �m2a2 � r�; �2�

where m1;m2 � 0;�1;�2; . . . ;�1; � � 1; 2; 3; . . . ; s, with

r� lying in the �a1a2� plane.

Owing to the translation symmetry of the problem, the

components of the wave vectors of the re¯ected and trans-

mitted waves parallel to the plane lattice are of the form

kkpq � kk � pb1 � qb2:

Here p, q are arbitrary integers and b1, b2 are vectors of the

two-dimensional reciprocal lattice, i.e. biaj � 2��ij, i; j � 1; 2.

Further, ck and c? denote the components of the vector



c � ck � c? parallel and perpendicular to the plane lattice,

respectively.

The wave vectors Kÿpq�k� and K�pq�k� of the re¯ected and

transmitted waves, respectively, are

K�pq � kkpq � e3Kpqz: �3�
Considering merely elastic scattering processes, jK�pq�k�j � k

must hold, so that

Kpqz�k� � � �k2 ÿ �kkpq�2�1=2: �4�
Let us consider the diffraction of particles (neutrons) in a

system of point scatterers. The Ewald dynamical (self-

consistent) theory of diffraction leads to the following

system of algebraic equations (Sears, 1989; Dederichs,

1972):

	�r� � A exp�ikr� ÿ
X
n;�

Q�

exp�ikjrÿ R�
nj�

jrÿ R�
nj

'n
��R�

n�; �5�

'm
� �R�

m� � A exp�ikR�
m� ÿ

X
�n;��6��m;��

0
Q�

exp�ikjR�
m ÿ R�

nj�
jR�

m ÿ R�
nj

'n
��R�

n�:

�6�
The total ®eld 	�r� is the superposition of the incident

wave A exp�ikr� and of the spherical waves generated by

all scatterers in the atomic plane. The scattering amplitude

of the �n��th atom is Q�'
n
��R�

n�, where 'n
��R�

n� is the

effective ®eld incident on the point-like scatterer located at

R�
n and Q� is the scattering length of the �th atom,

Q� � Q0
�=�1� ikQ0

��. Note that Im Q0
� ! 0ÿ when the

absorption is missing.

The solution of the Ewald equations proceeds as follows:

First we evaluate 'n
��R�

m� from (6) and then perform the

summation in (5).

Owing to the translational symmetry, we may put

'n�R�
n� � A exp�ikk�n1a1 � n2a2�� exp�ikkr��w�: �7�

After inserting (7) into (6), we obtain for the amplitudes w� a

nonhomogeneous system of algebraic equations:

w� � 1ÿ
X�1
n1;n2ÿ1

Xs

��1
� 6��

0
Q�

exp�ikjn1a1 � n2a2 � r� ÿ r�j�
jn1a1 � n2a2 � r� ÿ r�j

� exp�ikk�n1a1 � n2a2 � r� ÿ r���w�

ÿ
X�1
n1;n2

�n1;n2�6��0;0�ÿ1

0
Q�

exp�ikjn1a1 � n2a2j�
jn1a1 � n2a2j

� exp�ikk�n1a1 � n2a2��w�: �8�
Using the notation for the above lattice sums introduced in

(18) and (19) of Appendix A, (8) reads

w� � 1ÿ P
�6��

Q�S�k; 0; r� ÿ r�� exp�ikk�r� ÿ r���w�

ÿQ�S0�k�w�; �; � � 1; 2; . . . ; s: �9�
The solution of (9) for a single case with s � 2 is given in

Appendix B.

Further, we insert (7) into (5). Then,

	�r� � A exp�ikr�

ÿ A
X�1
n1;n2ÿ1

Xs

��1

Q�

exp�ikjn1a1 � n2a2 ÿ rk ÿ r? � r�j�
jn1a1 � n2a2 ÿ rk ÿ r? � r�j

� exp�ikk�n1a1 � n2a2 ÿ rk��w� exp�ikk�rk � r���
� A exp�ikr�
ÿ A

X
�

Q�w� exp�ikk�rk � r���S�k; rk; r� ÿ r?�: �10�

The crucial point of the above procedure is the evaluation of

the optical plane lattice sums over �n1; n2� in (8) and (10). How

to evaluate them is shown in Appendix A. Expressing the

lattice sum S�k; rk; r� ÿ r?� in (10) by means of (20), we get the

re¯ected and transmitted ®elds in the form

	�r� � A exp�ikr� ÿ 2�iA

ja1 � a2j
X
p;q
�

Q�w� exp�ÿir��pb1 � qb2��

� 1

Kpqz

exp�iK�pqr� for z> 0

exp�iKÿpqr� for z< 0:

�
�11�

Here,

r��pb1 � qb2� � r��K�pq ÿ k�
since K�pq � kk � pb1 � qb2 � e3Kpqz and r�e3 � 0.

The amplitudes w� are given by the nonhomogeneous

system of algebraic equations (9). The wavevectors K�pq and

Kÿpq in (11) are given by (3), their z components being deter-

mined by (4). From (4), it can be seen that there is a ®nite

number (depending on the wavevector of the incident radia-

tion, k) of re¯ected and transmitted waves with real Kpqz�k�,
and an in®nite number of nonradiative (evanescent) waves

with pure imaginary Kpqz�k�.
In the simple case of the lattice with a trivial basis (s � 1),

(9) yields w � 1=�1�QS0�kk�� and then the total ®eld (11)

reads

	�r� � A exp�ikr� ÿ 2�i

ja1 � a2j
AQ

1

1�QS0�kk�
�
X
p;q

1

Kpqz

exp�iK�pqr� for z> 0

exp�iKÿpqr� for z< 0:

�
Let us mention at this point the relation between the dy-

namical and kinematical approaches. In the kinematical

approximation, interactions among the scatterers are

neglected. Thus, the second term on the right-hand side of

dynamical equation (6) is missing and then (5) reads

	kin � A exp�ikr� ÿ A
X
n;�

Q�

exp�ikjrÿ R�
n j�

jrÿ R�
n j

exp�ikR�
n �:

�12�
In this expression, we recognize the sum of spherical waves

generated by all atoms in the plane which is treated by using

the phase-difference method in the Darwin theory (Darwin,

1914; Warren, 1990; Yashiro & Takahashi, 2000). Using for the

sum in (12) again the result derived in Appendix A, we obtain
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	kin � A exp�ikr� ÿ 2�i

ja1 � a2j
A
X
p;q
�

Q� exp�ÿir��pb1 � qb2��

� 1

Kpqz

exp�iK�pqr� for z> 0

exp�iKÿpqr� for z< 0:

�
�13�

Formula (13) was derived exactly for point-like scatterers.

If we consider the ®eld at a distant point from the plane, it

is possible to replace the scattering length Q� by a factor

Q�f��K�pq ÿ k� taking into account the inner structure of non-

point-like scatterers.

We have dealt with the re¯ection and transmission of

neutrons since in this case the lattice may be considered as a

system of point-like scatterers. To describe the interaction of

electromagnetic radiation with an atomic plane in the frame of

the Darwin theory, the plane is considered to be a system of

classical dipoles. The dipoles generate the radiation, which is

given in papers by Darwin (1914), James (1950), Warren

(1990) and Yashiro & Takahashi (2000) by the formula

ref ��� exp�ÿikr�=r, valid in the region far from a dipole. In the

dynamical theory, it is necessary to consider the interaction of

an atom with near neighbors in a plane, thus the above-

mentioned formula is not adequate. To render this interaction,

it is convenient to use the Ewald dipole model of a crystal

where the wave generated by a dipole is expressed by the

Hertz vector (Ewald, 1916a,b). The Ewald discrete dipole

model of the crystal was studied in our previous papers

(Litzman & RoÂ zsa, 1977; Litzman, 1978, 1980).

3. Comparison with Darwin theory. Are the forbidden
reflections allowed?

Using the `method of phase differences', Yashiro & Takahashi

(2000) obtained for the amplitude of the scattered wave from

an atomic plane, in the kinematical approximation, the

expression [see formulae (10), (14) and (21) in Yashiro &

Takahashi (2000)]

E � ÿiqE0 exp�2�ik�ÿct � r��
with

q � ÿCMref�= sin �H; M � 1=ja1 � a2j: �14�
Here f is the atomic scattering factor, C the polarization

factor, re the classical electron radius, k � 1=� and �H the

angle between the crystal surface and the wavevector of the

scattered wave.

The coef®cient q should be compared to the corresponding

term in the amplitude of the scattered wave in formula (13)

derived by using the kinematical approximation, i.e. with the

expression (for a lattice with a trivial basis)

ÿ 2�

ja1 � a2j
Q

Kpqz

: �15�

Using our notation, where K � 2�=� and Kpqz � K sin �H , and

neglecting the polarization factor C, which is missing in our

model, we can see the coincidence of the two results in the

frame of the kinematical theory.

For a lattice with basis, the scattering length Q should be

replaced in the kinematical theory by the structure factor [see

(13)] P
�

Q� exp�ÿir��pb1 � qb2��: �16�

On the other hand, in the dynamical theory, the structure

factor (16) is replaced by a more complicated expression [see

(11)]: P
�

Q�w� exp�ÿir��pb1 � qb2��: �17�

Here, w� are the solutions of the algebraic equations (9) and

thus they depend on Q� and r� for all � � 1; 2; . . . ; s (see also

Appendix B). It follows that in our dynamical theory some

diffractions forbidden according to (16) may be allowed.

Nevertheless, as Q� are of order 10ÿ15 m and the lattice sums

of order 1=a (a being the lattice parameter of order 10ÿ10 m),

we can see from (9) that w� � 1�O�Q=a�. Thus, the dy-

namical corrections yielded by (17) to the kinematical value

(16) are very small.

Finally, let us note that in the dynamical theory of diffrac-

tion by von Laue the crystal is characterized by the Fourier

transform of the potential, i.e. by �1=
� R V�r� exp�ÿiGr� dr

(Rauch & Petraschek, 1978), which for neutron diffraction

leads to the kinematical structure factor of the form (16).

4. The scattering from a stack of planes

After evaluating the transmission and re¯ection of a single

plane, the problem of re¯ection and transmission of a stack of

planes in Darwin's procedure (Darwin, 1914) is similar to that

in thin-®lm optics. It leads to a nonhomogeneous system of

algebraic equations. In the two-beam approximation, the

matrix of this system is a tridiagonal matrix and the properties

of these matrices and the determinants of these matrices

(continuants) can be utilized (Dub & Litzman, 1999).

But another more consistent approach may be followed,

which is based on the solution of Ewald's equations (5) and (6)

for a slab. However, in this case, it is necessary to solve the

dispersion relation yielding the perpendicular components of

the wave vectors inside the crystal.

In our paper (Litzman, 1986), we found the structure of the

solution of Ewald equations (5) and (6) for a slab formed by a

lattice with basis, where

R�
n � n1a1 � n2a2 � n3a3 � r�;

with n1; n2 � 0;�1; . . . ;�1, n3 � 0; 1; 2; . . . ;N. The general

formulae derived for both the coplanar or noncoplanar

multiwave transmission or re¯ection near or far from the

Bragg or Laue diffraction positions have a transparent alge-

braic form suitable for analytical or numerical approximations.

Note that the expressions

���j� �P
�

Q� exp�ÿir��pb1 � qb2 � e3Kpqz��u�� j�

(depending on the solutions  j of the dispersion equation),

which appeared in the above paper by Litzman (1986), could



be considered as the generalized structure factors analogous

to (17).

5. Summary

We have shown that the formulae for scattering of a plane

wave from an atomic plane can be effectively obtained for

both coplanar and noncoplanar cases as a simple application

of the optical plane lattice sums. Our theory taking into

account the interaction of the scatterers yields a structure

factor different from that used in the kinematical or in Laue's

dynamical diffraction theories and thus it may allow some

forbidden re¯ections.

APPENDIX A
The evaluation of two-dimensional lattice sums

To describe the interaction of radiation with layered structures

in the frame of the discrete model of a crystal, we have to

evaluate two-dimensional lattice sums of two kinds:

S�k;Rk; u� �
X�1
n1;n2ÿ1

exp�ikjn1a1 � n2a2 ÿ Rk � uj�
jn1a1 � n2a2 ÿ Rk � uj

� exp�ikk�n1a1 � n2a2 ÿ Rk��; �18�

S0�k� �
X�1
n1;n2

�n1;n2�6��0;0�ÿ1

0 exp�ikjn1a1 � n2a2j�
jn1a1 � n2a2j

� exp�ikk�n1a1 � n2a2��: �19�

The main difference between (18) and (19) is that in (19) the

term with �n1; n2� � �0; 0�, describing the interaction of the

atom with its own secondary ®eld, is excluded from the

summation. Both sums converge slowly. But because (18) is a

periodic function of Rk, it can be transformed into a sum over

the reciprocal lattice, which, as we shall see, converges rapidly.

Standard Fourier procedure yields

S�k;Rk; u� �
X
p;q

f �p; q� exp�i�pb1 � qb2�Rk�;

where

f �p; q� � 1

ja1 � a2j
ZZ �1
ÿ1

exp�ikjRk ÿ uj�
jRk ÿ uj exp�ÿikkpqRk� dRk:

This integral may be evaluated easily by using the Weyl

representation of the diverging spherical wave (Mandel &

Wolf, 1995)

exp�ik��=� � i

2�

ZZ �1
ÿ1

�ÿ1 exp�i�u� � v�� �j�j�� du dv;

where � � ��; �; �� and � � ��k2 ÿ u2 ÿ v2�1=2. Then, we get

f �p; q� � 2�i

ja1 � a2j
exp�ÿiukkkpq�

exp�ijuzjKpqz�
Kpqz

and ®nally

S�k;Rk; u� � 2�i

ja1 � a2j
X
p;q

exp�ÿiukkkpq�

� exp�ijuzjKpqz�
Kpqz

exp�i�pb1 � qb2�Rk�: �20�

The evaluation of the sum (19) is much more dif®cult. Using

the Ewald procedure (Ewald, 1932), we transformed (19) into

the sum of two rapidly convergent sums, one over the direct

lattice and the other over the reciprocal one (Dub & Litzman,

1983; Litzman, 1986). Note that

Im S0�k� � 2�

ja1 � a2j
X
p;q

K2
pqz>0

1

Kpqz

ÿ k: �21�

Looking for an approximate value of the sum (19), we can

write (Dub et al., 1996)

S0�k� � 1

a2

Z 1
a

Z 2�

0

exp�ikr� exp�ikkr cos'� d' dr

� 2�

a2

Z 1
a

exp�ikr�J0�kkr� dr:

As
R1

0 cos�kr�J0�kkr� dr � 0 for kk< k, in the region where

ak � 1, we can put jRe S�k0�j � 2� sin�ak�=ka2.

APPENDIX B
Evaluation of amplitudes wl for l = 1, 2

The system of equations (9) for s � 2 reads

w1 � 1ÿ a12w2 ÿ a11w1

w2 � 1ÿ a21w1 ÿ a22w2;
�22�

where

a�� � Q�S0�k�
a�� � Q�����k�

and

��� � S�k;O; r� ÿ r�� exp�ikk�r� ÿ r���;
whereby ��� 6� ���.

From (22), it follows that

w1 �
Q2�S0 ÿ �12� � 1

�
;

w2 �
Q1�S0 ÿ �21� � 1

�

with

� � 1� �Q1 �Q2�S0 �Q1Q2�S02 ÿ �12�21�:
Thus, generally w1 6� w2. Moreover, since the lattice sums are

of order 1=a (a being the lattice parameter of order 10ÿ10 m)

and scattering lengths Q� are of order 10ÿ15 m, the amplitudes

w� differ from 1 by terms of order 10ÿ5.
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